TSTP Solution File: SET044^23 by cvc5---1.0.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cvc5---1.0.5
% Problem  : SET044^23 : TPTP v8.1.2. Released v8.1.0.
% Transfm  : none
% Format   : tptp
% Command  : do_cvc5 %s %d

% Computer : n003.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 14:37:06 EDT 2023

% Result   : Theorem 0.20s 0.53s
% Output   : Proof 0.20s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.14  % Problem    : SET044^23 : TPTP v8.1.2. Released v8.1.0.
% 0.00/0.15  % Command    : do_cvc5 %s %d
% 0.14/0.35  % Computer : n003.cluster.edu
% 0.14/0.35  % Model    : x86_64 x86_64
% 0.14/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.35  % Memory   : 8042.1875MB
% 0.14/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.35  % CPULimit   : 300
% 0.14/0.35  % WCLimit    : 300
% 0.14/0.35  % DateTime   : Sat Aug 26 11:21:09 EDT 2023
% 0.14/0.35  % CPUTime    : 
% 0.20/0.48  %----Proving TH0
% 0.20/0.49  %------------------------------------------------------------------------------
% 0.20/0.49  % File     : SET044^23 : TPTP v8.1.2. Released v8.1.0.
% 0.20/0.49  % Domain   : Set Theory
% 0.20/0.49  % Problem  : TPTP problem SET044+1.p with axiomatized equality
% 0.20/0.49  % Version  : [BP13] axioms.
% 0.20/0.49  % English  : 
% 0.20/0.49  
% 0.20/0.49  % Refs     : [RO12]  Raths & Otten (2012), The QMLTP Problem Library for Fi
% 0.20/0.49  %          : [BP13]  Benzmueller & Paulson (2013), Quantified Multimodal Lo
% 0.20/0.49  %          : [Ste22] Steen (2022), An Extensible Logic Embedding Tool for L
% 0.20/0.49  % Source   : [TPTP]
% 0.20/0.49  % Names    : SET044+1 [QMLTP]
% 0.20/0.49  
% 0.20/0.49  % Status   : Theorem 
% 0.20/0.49  % Rating   : 0.23 v8.1.0
% 0.20/0.49  % Syntax   : Number of formulae    :   30 (  12 unt;  15 typ;  10 def)
% 0.20/0.49  %            Number of atoms       :   47 (  10 equ;   0 cnn)
% 0.20/0.49  %            Maximal formula atoms :   15 (   3 avg)
% 0.20/0.49  %            Number of connectives :   75 (   1   ~;   1   |;   5   &;  62   @)
% 0.20/0.49  %                                         (   1 <=>;   5  =>;   0  <=;   0 <~>)
% 0.20/0.49  %            Maximal formula depth :   14 (   3 avg)
% 0.20/0.49  %            Number of types       :    3 (   1 usr)
% 0.20/0.49  %            Number of type conns  :   62 (  62   >;   0   *;   0   +;   0  <<)
% 0.20/0.49  %            Number of symbols     :   15 (  14 usr;   1 con; 0-3 aty)
% 0.20/0.49  %            Number of variables   :   41 (  28   ^;  10   !;   3   ?;  41   :)
% 0.20/0.49  % SPC      : TH0_THM_EQU_NAR
% 0.20/0.49  
% 0.20/0.49  % Comments : This output was generated by embedproblem, version 1.7.1 (library
% 0.20/0.49  %            version 1.3). Generated on Thu Apr 28 13:18:18 EDT 2022 using
% 0.20/0.49  %            'modal' embedding, version 1.5.2. Logic specification used:
% 0.20/0.49  %            $modal == [$constants == $rigid,$quantification == $decreasing,
% 0.20/0.49  %            $modalities == $modal_system_S5].
% 0.20/0.49  %------------------------------------------------------------------------------
% 0.20/0.49  thf(mworld,type,
% 0.20/0.49      mworld: $tType ).
% 0.20/0.49  
% 0.20/0.49  thf(mrel_type,type,
% 0.20/0.49      mrel: mworld > mworld > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mactual_type,type,
% 0.20/0.49      mactual: mworld ).
% 0.20/0.49  
% 0.20/0.49  thf(mlocal_type,type,
% 0.20/0.49      mlocal: ( mworld > $o ) > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mlocal_def,definition,
% 0.20/0.49      ( mlocal
% 0.20/0.49      = ( ^ [Phi: mworld > $o] : ( Phi @ mactual ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(mnot_type,type,
% 0.20/0.49      mnot: ( mworld > $o ) > mworld > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mand_type,type,
% 0.20/0.49      mand: ( mworld > $o ) > ( mworld > $o ) > mworld > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mor_type,type,
% 0.20/0.49      mor: ( mworld > $o ) > ( mworld > $o ) > mworld > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mimplies_type,type,
% 0.20/0.49      mimplies: ( mworld > $o ) > ( mworld > $o ) > mworld > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mequiv_type,type,
% 0.20/0.49      mequiv: ( mworld > $o ) > ( mworld > $o ) > mworld > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mnot_def,definition,
% 0.20/0.49      ( mnot
% 0.20/0.49      = ( ^ [A: mworld > $o,W: mworld] :
% 0.20/0.49            ~ ( A @ W ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(mand_def,definition,
% 0.20/0.49      ( mand
% 0.20/0.49      = ( ^ [A: mworld > $o,B: mworld > $o,W: mworld] :
% 0.20/0.49            ( ( A @ W )
% 0.20/0.49            & ( B @ W ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(mor_def,definition,
% 0.20/0.49      ( mor
% 0.20/0.49      = ( ^ [A: mworld > $o,B: mworld > $o,W: mworld] :
% 0.20/0.49            ( ( A @ W )
% 0.20/0.49            | ( B @ W ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(mimplies_def,definition,
% 0.20/0.49      ( mimplies
% 0.20/0.49      = ( ^ [A: mworld > $o,B: mworld > $o,W: mworld] :
% 0.20/0.49            ( ( A @ W )
% 0.20/0.49           => ( B @ W ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(mequiv_def,definition,
% 0.20/0.49      ( mequiv
% 0.20/0.49      = ( ^ [A: mworld > $o,B: mworld > $o,W: mworld] :
% 0.20/0.49            ( ( A @ W )
% 0.20/0.49          <=> ( B @ W ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(mbox_type,type,
% 0.20/0.49      mbox: ( mworld > $o ) > mworld > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mbox_def,definition,
% 0.20/0.49      ( mbox
% 0.20/0.49      = ( ^ [Phi: mworld > $o,W: mworld] :
% 0.20/0.49          ! [V: mworld] :
% 0.20/0.49            ( ( mrel @ W @ V )
% 0.20/0.49           => ( Phi @ V ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(mdia_type,type,
% 0.20/0.49      mdia: ( mworld > $o ) > mworld > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mdia_def,definition,
% 0.20/0.49      ( mdia
% 0.20/0.49      = ( ^ [Phi: mworld > $o,W: mworld] :
% 0.20/0.49          ? [V: mworld] :
% 0.20/0.49            ( ( mrel @ W @ V )
% 0.20/0.49            & ( Phi @ V ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(mrel_reflexive,axiom,
% 0.20/0.49      ! [W: mworld] : ( mrel @ W @ W ) ).
% 0.20/0.49  
% 0.20/0.49  thf(mrel_euclidean,axiom,
% 0.20/0.49      ! [W: mworld,V: mworld,U: mworld] :
% 0.20/0.49        ( ( ( mrel @ W @ U )
% 0.20/0.49          & ( mrel @ W @ V ) )
% 0.20/0.49       => ( mrel @ U @ V ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(eiw_di_type,type,
% 0.20/0.49      eiw_di: $i > mworld > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(eiw_di_nonempty,axiom,
% 0.20/0.49      ! [W: mworld] :
% 0.20/0.49      ? [X: $i] : ( eiw_di @ X @ W ) ).
% 0.20/0.49  
% 0.20/0.49  thf(eiw_di_decr,axiom,
% 0.20/0.49      ! [W: mworld,V: mworld,X: $i] :
% 0.20/0.49        ( ( ( eiw_di @ X @ W )
% 0.20/0.49          & ( mrel @ V @ W ) )
% 0.20/0.49       => ( eiw_di @ X @ V ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(mforall_di_type,type,
% 0.20/0.49      mforall_di: ( $i > mworld > $o ) > mworld > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mforall_di_def,definition,
% 0.20/0.49      ( mforall_di
% 0.20/0.49      = ( ^ [A: $i > mworld > $o,W: mworld] :
% 0.20/0.49          ! [X: $i] :
% 0.20/0.49            ( ( eiw_di @ X @ W )
% 0.20/0.49           => ( A @ X @ W ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(mexists_di_type,type,
% 0.20/0.49      mexists_di: ( $i > mworld > $o ) > mworld > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mexists_di_def,definition,
% 0.20/0.49      ( mexists_di
% 0.20/0.49      = ( ^ [A: $i > mworld > $o,W: mworld] :
% 0.20/0.49          ? [X: $i] :
% 0.20/0.49            ( ( eiw_di @ X @ W )
% 0.20/0.49            & ( A @ X @ W ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(element_decl,type,
% 0.20/0.49      element: $i > $i > mworld > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(pel40,conjecture,
% 0.20/0.49      ( mlocal
% 0.20/0.49      @ ( mimplies
% 0.20/0.49        @ ( mexists_di
% 0.20/0.49          @ ^ [Y: $i] :
% 0.20/0.49              ( mforall_di
% 0.20/0.49              @ ^ [X: $i] : ( mequiv @ ( element @ X @ Y ) @ ( element @ X @ X ) ) ) )
% 0.20/0.49        @ ( mnot
% 0.20/0.49          @ ( mforall_di
% 0.20/0.49            @ ^ [X1: $i] :
% 0.20/0.49                ( mexists_di
% 0.20/0.49                @ ^ [Y1: $i] :
% 0.20/0.49                    ( mforall_di
% 0.20/0.49                    @ ^ [Z: $i] : ( mequiv @ ( element @ Z @ Y1 ) @ ( mnot @ ( element @ Z @ X1 ) ) ) ) ) ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %------------------------------------------------------------------------------
% 0.20/0.49  ------- convert to smt2 : /export/starexec/sandbox/tmp/tmp.I9PV6NRurc/cvc5---1.0.5_13435.p...
% 0.20/0.49  (declare-sort $$unsorted 0)
% 0.20/0.49  (declare-sort tptp.mworld 0)
% 0.20/0.49  (declare-fun tptp.mrel (tptp.mworld tptp.mworld) Bool)
% 0.20/0.49  (declare-fun tptp.mactual () tptp.mworld)
% 0.20/0.49  (declare-fun tptp.mlocal ((-> tptp.mworld Bool)) Bool)
% 0.20/0.49  (assert (= tptp.mlocal (lambda ((Phi (-> tptp.mworld Bool))) (@ Phi tptp.mactual))))
% 0.20/0.49  (declare-fun tptp.mnot ((-> tptp.mworld Bool) tptp.mworld) Bool)
% 0.20/0.49  (declare-fun tptp.mand ((-> tptp.mworld Bool) (-> tptp.mworld Bool) tptp.mworld) Bool)
% 0.20/0.49  (declare-fun tptp.mor ((-> tptp.mworld Bool) (-> tptp.mworld Bool) tptp.mworld) Bool)
% 0.20/0.49  (declare-fun tptp.mimplies ((-> tptp.mworld Bool) (-> tptp.mworld Bool) tptp.mworld) Bool)
% 0.20/0.49  (declare-fun tptp.mequiv ((-> tptp.mworld Bool) (-> tptp.mworld Bool) tptp.mworld) Bool)
% 0.20/0.49  (assert (= tptp.mnot (lambda ((A (-> tptp.mworld Bool)) (W tptp.mworld)) (not (@ A W)))))
% 0.20/0.49  (assert (= tptp.mand (lambda ((A (-> tptp.mworld Bool)) (B (-> tptp.mworld Bool)) (W tptp.mworld)) (and (@ A W) (@ B W)))))
% 0.20/0.49  (assert (= tptp.mor (lambda ((A (-> tptp.mworld Bool)) (B (-> tptp.mworld Bool)) (W tptp.mworld)) (or (@ A W) (@ B W)))))
% 0.20/0.49  (assert (= tptp.mimplies (lambda ((A (-> tptp.mworld Bool)) (B (-> tptp.mworld Bool)) (W tptp.mworld)) (=> (@ A W) (@ B W)))))
% 0.20/0.49  (assert (= tptp.mequiv (lambda ((A (-> tptp.mworld Bool)) (B (-> tptp.mworld Bool)) (W tptp.mworld)) (= (@ A W) (@ B W)))))
% 0.20/0.49  (declare-fun tptp.mbox ((-> tptp.mworld Bool) tptp.mworld) Bool)
% 0.20/0.49  (assert (= tptp.mbox (lambda ((Phi (-> tptp.mworld Bool)) (W tptp.mworld)) (forall ((V tptp.mworld)) (=> (@ (@ tptp.mrel W) V) (@ Phi V))))))
% 0.20/0.49  (declare-fun tptp.mdia ((-> tptp.mworld Bool) tptp.mworld) Bool)
% 0.20/0.49  (assert (= tptp.mdia (lambda ((Phi (-> tptp.mworld Bool)) (W tptp.mworld)) (exists ((V tptp.mworld)) (and (@ (@ tptp.mrel W) V) (@ Phi V))))))
% 0.20/0.49  (assert (forall ((W tptp.mworld)) (@ (@ tptp.mrel W) W)))
% 0.20/0.49  (assert (forall ((W tptp.mworld) (V tptp.mworld) (U tptp.mworld)) (let ((_let_1 (@ tptp.mrel W))) (=> (and (@ _let_1 U) (@ _let_1 V)) (@ (@ tptp.mrel U) V)))))
% 0.20/0.49  (declare-fun tptp.eiw_di ($$unsorted tptp.mworld) Bool)
% 0.20/0.49  (assert (forall ((W tptp.mworld)) (exists ((X $$unsorted)) (@ (@ tptp.eiw_di X) W))))
% 0.20/0.49  (assert (forall ((W tptp.mworld) (V tptp.mworld) (X $$unsorted)) (let ((_let_1 (@ tptp.eiw_di X))) (=> (and (@ _let_1 W) (@ (@ tptp.mrel V) W)) (@ _let_1 V)))))
% 0.20/0.49  (declare-fun tptp.mforall_di ((-> $$unsorted tptp.mworld Bool) tptp.mworld) Bool)
% 0.20/0.49  (assert (= tptp.mforall_di (lambda ((A (-> $$unsorted tptp.mworld Bool)) (W tptp.mworld)) (forall ((X $$unsorted)) (=> (@ (@ tptp.eiw_di X) W) (@ (@ A X) W))))))
% 0.20/0.49  (declare-fun tptp.mexists_di ((-> $$unsorted tptp.mworld Bool) tptp.mworld) Bool)
% 0.20/0.49  (assert (= tptp.mexists_di (lambda ((A (-> $$unsorted tptp.mworld Bool)) (W tptp.mworld)) (exists ((X $$unsorted)) (and (@ (@ tptp.eiw_di X) W) (@ (@ A X) W))))))
% 0.20/0.49  (declare-fun tptp.element ($$unsorted $$unsorted tptp.mworld) Bool)
% 0.20/0.49  (assert (not (@ tptp.mlocal (@ (@ tptp.mimplies (@ tptp.mexists_di (lambda ((Y $$unsorted) (__flatten_var_0 tptp.mworld)) (@ (@ tptp.mforall_di (lambda ((X $$unsorted) (__flatten_var_0 tptp.mworld)) (let ((_let_1 (@ tptp.element X))) (@ (@ (@ tptp.mequiv (@ _let_1 Y)) (@ _let_1 X)) __flatten_var_0)))) __flatten_var_0)))) (@ tptp.mnot (@ tptp.mforall_di (lambda ((X1 $$unsorted) (__flatten_var_0 tptp.mworld)) (@ (@ tptp.mexists_di (lambda ((Y1 $$unsorted) (__flatten_var_0 tptp.mworld)) (@ (@ tptp.mforall_di (lambda ((Z $$unsorted) (__flatten_var_0 tptp.mworld)) (let ((_let_1 (@ tptp.element Z))) (@ (@ (@ tptp.mequiv (@ _let_1 Y1)) (@ tptp.mnot (@ _let_1 X1))) __flatten_var_0)))) __flatten_var_0))) __flatten_var_0))))))))
% 0.20/0.53  (set-info :filename cvc5---1.0.5_13435)
% 0.20/0.53  (check-sat-assuming ( true ))
% 0.20/0.53  ------- get file name : TPTP file name is SET044^23
% 0.20/0.53  ------- cvc5-thf : /export/starexec/sandbox/solver/bin/cvc5---1.0.5_13435.smt2...
% 0.20/0.53  --- Run --ho-elim --full-saturate-quant at 10...
% 0.20/0.53  % SZS status Theorem for SET044^23
% 0.20/0.53  % SZS output start Proof for SET044^23
% 0.20/0.53  (
% 0.20/0.53  (let ((_let_1 (not (@ tptp.mlocal (@ (@ tptp.mimplies (@ tptp.mexists_di (lambda ((Y $$unsorted) (__flatten_var_0 tptp.mworld)) (@ (@ tptp.mforall_di (lambda ((X $$unsorted) (__flatten_var_0 tptp.mworld)) (let ((_let_1 (@ tptp.element X))) (@ (@ (@ tptp.mequiv (@ _let_1 Y)) (@ _let_1 X)) __flatten_var_0)))) __flatten_var_0)))) (@ tptp.mnot (@ tptp.mforall_di (lambda ((X1 $$unsorted) (__flatten_var_0 tptp.mworld)) (@ (@ tptp.mexists_di (lambda ((Y1 $$unsorted) (__flatten_var_0 tptp.mworld)) (@ (@ tptp.mforall_di (lambda ((Z $$unsorted) (__flatten_var_0 tptp.mworld)) (let ((_let_1 (@ tptp.element Z))) (@ (@ (@ tptp.mequiv (@ _let_1 Y1)) (@ tptp.mnot (@ _let_1 X1))) __flatten_var_0)))) __flatten_var_0))) __flatten_var_0))))))))) (let ((_let_2 (= tptp.mexists_di (lambda ((A (-> $$unsorted tptp.mworld Bool)) (W tptp.mworld)) (exists ((X $$unsorted)) (and (@ (@ tptp.eiw_di X) W) (@ (@ A X) W))))))) (let ((_let_3 (= tptp.mforall_di (lambda ((A (-> $$unsorted tptp.mworld Bool)) (W tptp.mworld)) (forall ((X $$unsorted)) (=> (@ (@ tptp.eiw_di X) W) (@ (@ A X) W))))))) (let ((_let_4 (= tptp.mdia (lambda ((Phi (-> tptp.mworld Bool)) (W tptp.mworld)) (exists ((V tptp.mworld)) (and (@ (@ tptp.mrel W) V) (@ Phi V))))))) (let ((_let_5 (= tptp.mbox (lambda ((Phi (-> tptp.mworld Bool)) (W tptp.mworld)) (forall ((V tptp.mworld)) (=> (@ (@ tptp.mrel W) V) (@ Phi V))))))) (let ((_let_6 (= tptp.mequiv (lambda ((A (-> tptp.mworld Bool)) (B (-> tptp.mworld Bool)) (W tptp.mworld)) (= (@ A W) (@ B W)))))) (let ((_let_7 (= tptp.mimplies (lambda ((A (-> tptp.mworld Bool)) (B (-> tptp.mworld Bool)) (W tptp.mworld)) (=> (@ A W) (@ B W)))))) (let ((_let_8 (= tptp.mor (lambda ((A (-> tptp.mworld Bool)) (B (-> tptp.mworld Bool)) (W tptp.mworld)) (or (@ A W) (@ B W)))))) (let ((_let_9 (= tptp.mand (lambda ((A (-> tptp.mworld Bool)) (B (-> tptp.mworld Bool)) (W tptp.mworld)) (and (@ A W) (@ B W)))))) (let ((_let_10 (= tptp.mnot (lambda ((A (-> tptp.mworld Bool)) (W tptp.mworld)) (not (@ A W)))))) (let ((_let_11 (= tptp.mlocal (lambda ((Phi (-> tptp.mworld Bool))) (@ Phi tptp.mactual))))) (let ((_let_12 (ho_4 (ho_6 k_5 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_9) tptp.mactual))) (let ((_let_13 (forall ((X $$unsorted)) (not (ho_4 (ho_6 k_5 X) tptp.mactual))))) (let ((_let_14 (not _let_12))) (let ((_let_15 (or _let_14 (not (forall ((X $$unsorted)) (let ((_let_1 (ho_8 k_7 X))) (or (not (ho_4 (ho_6 k_5 X) tptp.mactual)) (= (ho_4 (ho_6 _let_1 X) tptp.mactual) (ho_4 (ho_6 _let_1 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_9) tptp.mactual))))))))) (let ((_let_16 (forall ((X $$unsorted)) (or (not (ho_4 (ho_6 k_5 X) tptp.mactual)) (not (forall ((X $$unsorted)) (let ((_let_1 (ho_8 k_7 X))) (or (not (ho_4 (ho_6 k_5 X) tptp.mactual)) (= (ho_4 (ho_6 _let_1 X) tptp.mactual) (ho_4 (ho_6 _let_1 X) tptp.mactual)))))))))) (let ((_let_17 (not _let_15))) (let ((_let_18 (forall ((X $$unsorted)) (or (not (ho_4 (ho_6 k_5 X) tptp.mactual)) (not (forall ((BOUND_VARIABLE_1118 $$unsorted)) (let ((_let_1 (ho_8 k_7 BOUND_VARIABLE_1118))) (or (not (ho_4 (ho_6 k_5 BOUND_VARIABLE_1118) tptp.mactual)) (= (not (ho_4 (ho_6 _let_1 BOUND_VARIABLE_1118) tptp.mactual)) (ho_4 (ho_6 _let_1 X) tptp.mactual)))))))))) (let ((_let_19 (not _let_18))) (let ((_let_20 (not _let_16))) (let ((_let_21 (EQ_RESOLVE (ASSUME :args (_let_1)) (TRANS (MACRO_SR_EQ_INTRO (AND_INTRO (EQ_RESOLVE (ASSUME :args (_let_2)) (MACRO_SR_EQ_INTRO :args (_let_2 SB_DEFAULT SBA_FIXPOINT))) (EQ_RESOLVE (ASSUME :args (_let_3)) (MACRO_SR_EQ_INTRO :args (_let_3 SB_DEFAULT SBA_FIXPOINT))) (EQ_RESOLVE (ASSUME :args (_let_4)) (MACRO_SR_EQ_INTRO :args (_let_4 SB_DEFAULT SBA_FIXPOINT))) (EQ_RESOLVE (ASSUME :args (_let_5)) (MACRO_SR_EQ_INTRO :args (_let_5 SB_DEFAULT SBA_FIXPOINT))) (ASSUME :args (_let_6)) (ASSUME :args (_let_7)) (ASSUME :args (_let_8)) (ASSUME :args (_let_9)) (ASSUME :args (_let_10)) (ASSUME :args (_let_11))) :args (_let_1 SB_DEFAULT SBA_FIXPOINT)) (PREPROCESS :args ((= (not (=> (not (forall ((X $$unsorted)) (or (not (@ (@ tptp.eiw_di X) tptp.mactual)) (not (forall ((X $$unsorted)) (let ((_let_1 (@ tptp.element X))) (or (not (@ (@ tptp.eiw_di X) tptp.mactual)) (= (@ (@ _let_1 X) tptp.mactual) (@ (@ _let_1 X) tptp.mactual))))))))) (not (or (not (forall ((X $$unsorted)) (or (not (@ (@ tptp.eiw_di X) tptp.mactual)) (not (forall ((BOUND_VARIABLE_1118 $$unsorted)) (let ((_let_1 (@ tptp.element BOUND_VARIABLE_1118))) (or (not (@ (@ tptp.eiw_di BOUND_VARIABLE_1118) tptp.mactual)) (= (@ (@ _let_1 X) tptp.mactual) (not (@ (@ _let_1 BOUND_VARIABLE_1118) tptp.mactual)))))))))) (forall ((X $$unsorted)) (not (@ (@ tptp.eiw_di X) tptp.mactual))))))) (not (=> _let_20 (not (or _let_19 _let_13))))))))))) (let ((_let_22 (or))) (let ((_let_23 (_let_20))) (let ((_let_24 (forall ((BOUND_VARIABLE_1118 $$unsorted)) (let ((_let_1 (ho_8 k_7 BOUND_VARIABLE_1118))) (or (not (ho_4 (ho_6 k_5 BOUND_VARIABLE_1118) tptp.mactual)) (= (not (ho_4 (ho_6 _let_1 BOUND_VARIABLE_1118) tptp.mactual)) (ho_4 (ho_6 _let_1 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_10) tptp.mactual))))))) (let ((_let_25 (or (not (ho_4 (ho_6 k_5 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_10) tptp.mactual)) (not _let_24)))) (let ((_let_26 (_let_24))) (let ((_let_27 (_let_19))) (let ((_let_28 (_let_13))) (SCOPE (SCOPE (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE (ASSUME :args _let_28) :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_9 QUANTIFIERS_INST_CBQI_CONFLICT)) :args _let_28)) (MACRO_RESOLUTION_TRUST (REORDERING (NOT_NOT_ELIM (NOT_IMPLIES_ELIM2 _let_21)) :args ((or _let_13 _let_19))) (MACRO_RESOLUTION_TRUST (EQ_RESOLVE (IMPLIES_ELIM (SCOPE (SKOLEMIZE (ASSUME :args _let_27)) :args _let_27)) (CONG (MACRO_SR_PRED_INTRO :args ((= (not _let_19) _let_18))) (REFL :args ((not _let_25))) :args _let_22)) (REORDERING (IMPLIES_ELIM (MACRO_SR_PRED_ELIM (SCOPE (INSTANTIATE (ASSUME :args _let_26) :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_10 QUANTIFIERS_INST_E_MATCHING_SIMPLE ((ho_6 k_5 BOUND_VARIABLE_1118)))) :args _let_26))) :args (_let_25)) :args (_let_18 false _let_25)) :args (_let_13 false _let_18)) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_OR_NEG :args (_let_15 0)) (CONG (REFL :args (_let_15)) (MACRO_SR_PRED_INTRO :args ((= (not _let_14) _let_12))) :args _let_22)) :args ((or _let_12 _let_15))) (MACRO_RESOLUTION_TRUST (EQ_RESOLVE (IMPLIES_ELIM (EQ_RESOLVE (SCOPE (SKOLEMIZE (ASSUME :args _let_23)) :args _let_23) (REWRITE :args ((=> _let_20 (not (or _let_14 (not (forall ((X $$unsorted)) (let ((_let_1 (ho_8 k_7 X))) (or (not (ho_4 (ho_6 k_5 X) tptp.mactual)) (= (ho_4 (ho_6 _let_1 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_9) tptp.mactual) (ho_4 (ho_6 _let_1 X) tptp.mactual))))))))))))) (CONG (MACRO_SR_PRED_INTRO :args ((= (not _let_20) _let_16))) (REFL :args (_let_17)) :args _let_22)) (NOT_IMPLIES_ELIM1 _let_21) :args (_let_17 true _let_16)) :args (_let_12 true _let_15)) :args (false false _let_13 false _let_12)) :args (_let_11 _let_10 _let_9 _let_8 _let_7 _let_6 _let_5 _let_4 (forall ((W tptp.mworld)) (@ (@ tptp.mrel W) W)) (forall ((W tptp.mworld) (V tptp.mworld) (U tptp.mworld)) (let ((_let_1 (@ tptp.mrel W))) (=> (and (@ _let_1 U) (@ _let_1 V)) (@ (@ tptp.mrel U) V)))) (forall ((W tptp.mworld)) (exists ((X $$unsorted)) (@ (@ tptp.eiw_di X) W))) (forall ((W tptp.mworld) (V tptp.mworld) (X $$unsorted)) (let ((_let_1 (@ tptp.eiw_di X))) (=> (and (@ _let_1 W) (@ (@ tptp.mrel V) W)) (@ _let_1 V)))) _let_3 _let_2 _let_1 true)))))))))))))))))))))))))))))))
% 0.20/0.54  )
% 0.20/0.54  % SZS output end Proof for SET044^23
% 0.20/0.54  % cvc5---1.0.5 exiting
% 0.20/0.54  % cvc5---1.0.5 exiting
%------------------------------------------------------------------------------